Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EBioMedicine ; 98: 104861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924707

RESUMO

BACKGROUND: Normothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking. METHODS: A rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury. FINDINGS: Healthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%). INTERPRETATION: High-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results. FUNDING: Funding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.


Assuntos
Transplante de Fígado , Animais , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Roedores , Estudos Prospectivos , Perfusão/métodos , Sobrevivência de Enxerto , Preservação de Órgãos/métodos , Fígado , Doadores de Tecidos , Inflamação
3.
Eur J Pharmacol ; 931: 175177, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934089

RESUMO

Metformin is an antihyperglycemic drug which is being examined as a repurposed treatment for cardiovascular disease for individuals without diabetes mellitus. Despite evidence that mitochondrial respiratory complex I is a target of metformin and inhibition of the enzyme is one of the mechanisms of its therapeutic actions, no systematic studies of the metformin effect on intact mitochondria have been reported. In the presented paper, we described the effect of metformin on respiration and ROS release by intact mitochondria from the liver and brain. By comparing the effect of metformin on mitochondria oxidizing different substrates, we found direct inhibition of respiration and stimulation of ROS release when complex I-based respiration is measured (forward electron transfer). Metformin had no effect on respiration rates but inhibited ROS release when mitochondria oxidize succinate or glycerol 3-phosphate in conditions of reverse electron transfer in complex I. In addition, we found that metformin is a weak effector of the active/deactive (A/D) transition of mitochondrial complex I. At high concentrations, metformin increases the rate of spontaneous deactivation of complex I (A→D transition). The results obtained are consistent with the concept of metformin inhibition of complex I and that it can either stimulate or inhibit mitochondrial ROS production depending on the preferential respiratory substrate. This is relevant during the ischemia/reperfusion process, to counteract the ROS overproduction, which is induced by a high level of reverse electron transfer substrates is generated after an ischemic event.


Assuntos
Metformina , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons , Humanos , Fígado/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Mitocôndrias , Mitocôndrias Hepáticas , Espécies Reativas de Oxigênio/metabolismo
4.
Hum Immunol ; 83(7): 547-550, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525710

RESUMO

In this population-based case-control study conducted in the Chelyabinsk region of Russia, we examined the distribution of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, in a group of 100 patients with confirmed COVID-19 bilateral pneumonia. Typing was performed by NGS and statistical calculations were carried out with the Arlequin program. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles were compared between patients with COVID-19 and 99 healthy controls. We identified that COVID-19 susceptibility is associated with alleles and genotypes rs9277534A (disequilibrium with HLA-DPB1*02:01, -02:02, -04:01, -04:02, -17:01 alleles) with low expression of protein products HLA-DPB1 (pc < 0.028) and homozygosity at HLA-C*04 (p = 0.024, pc = 0.312). Allele HLA-A*01:01 was decreased in a group of patients with severe forms of bilateral pneumonia, and therefore it may be considered as a protective factor for the development of severe symptoms of COVID-19 (p = 0.009, pc = 0.225). Our studies provide further evidence for the functional association between HLA genes and COVID-19.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Alelos , COVID-19/genética , COVID-19/imunologia , Estudos de Casos e Controles , Frequência do Gene , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Antígenos HLA-D/genética , Antígenos HLA-D/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos
5.
Anal Biochem ; 646: 114646, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259403

RESUMO

Mitochondrial complex I is the only enzyme responsible for oxidation of matrix NADH and regeneration of NAD+ for catabolism. Nuclear and mtDNA mutations, assembly impairments, and enzyme damage are implicated in inherited diseases, ischemia-reperfusion injury, neurodegeneration, and tumorogenesis. Here we introduce a novel method to measure the absolute content of complex I. The method is based on flavin fluorescence scanning of a polyacrylamide gel after separation of complexes by Clear Native electrophoresis. Using mouse primary astrocytes as an example, we calculated an average value of 2.2 × 105 complex I molecules/cell. Our method can be used for accurate quantification of complex I content.


Assuntos
Complexo I de Transporte de Elétrons , Traumatismo por Reperfusão , Animais , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , NAD/metabolismo , Oxirredução
6.
Antioxidants (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35204081

RESUMO

Mitochondrial Ca2+-independent phospholipase A2γ (iPLA2γ/PNPLA8) was previously shown to be directly activated by H2O2 and release free fatty acids (FAs) for FA-dependent H+ transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLA2γ in the brain is not completely understood. Here, using wild-type and iPLA2γ-KO mice, we demonstrate the ability of tert-butylhydroperoxide (TBHP) to activate iPLA2γ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLA2γ, reflecting cleavage of glycerophospholipids from both sn-1 and sn-2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLA2γ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial H2O2 release. We also show that iPLA2γ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLA2γ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLA2γ-KO mice. Collectively, our results support a key role of iPLA2γ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.

7.
Redox Biol ; 51: 102258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189550

RESUMO

Pathologies associated with tissue ischemia/reperfusion (I/R) in highly metabolizing organs such as the brain and heart are leading causes of death and disability in humans. Molecular mechanisms underlying mitochondrial dysfunction during acute injury in I/R are tissue-specific, but their details are not completely understood. A metabolic shift and accumulation of substrates of reverse electron transfer (RET) such as succinate are observed in tissue ischemia, making mitochondrial complex I of the respiratory chain (NADH:ubiquinone oxidoreductase) the most vulnerable enzyme to the following reperfusion. It has been shown that brain complex I is predisposed to losing its flavin mononucleotide (FMN) cofactor when maintained in the reduced state in conditions of RET both in vitro and in vivo. Here we investigated the process of redox-dependent dissociation of FMN from mitochondrial complex I in brain and heart mitochondria. In contrast to the brain enzyme, cardiac complex I does not lose FMN when reduced in RET conditions. We proposed that the different kinetics of FMN loss during RET is due to the presence of brain-specific long 50 kDa isoform of the NDUFV3 subunit of complex I, which is absent in the heart where only the canonical 10 kDa short isoform is found. Our simulation studies suggest that the long NDUFV3 isoform can reach toward the FMN binding pocket and affect the nucleotide affinity to the apoenzyme. For the first time, we demonstrated a potential functional role of tissue-specific isoforms of complex I, providing the distinct molecular mechanism of I/R-induced mitochondrial impairment in cardiac and cerebral tissues. By combining functional studies of intact complex I and molecular structure simulations, we defined the critical difference between the brain and heart enzyme and suggested insights into the redox-dependent inactivation mechanisms of complex I during I/R injury in both tissues.


Assuntos
Complexo I de Transporte de Elétrons , Mononucleotídeo de Flavina , Encéfalo/metabolismo , Dinitrocresóis , Complexo I de Transporte de Elétrons/metabolismo , Mononucleotídeo de Flavina/metabolismo , Coração , Humanos , Isquemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Oxirredução
8.
Pediatr Res ; 91(6): 1383-1390, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947998

RESUMO

BACKGROUND: In the developing brain, the death of immature oligodendrocytes (OLs) has been proposed to explain a developmental window for vulnerability to white matter injury (WMI). However, in neonatal mice, chronic sublethal intermittent hypoxia (IH) recapitulates the phenotype of diffuse WMI without affecting cellular viability. This work determines whether, in neonatal mice, a developmental window of WMI vulnerability exists in the absence of OLs lineage cellular death. METHODS: Neonatal mice were exposed to cell-nonlethal early or late IH stress. The presence or absence of WMI phenotype in their adulthood was defined by the extent of sensorimotor deficit and diffuse cerebral hypomyelination. A separate cohort of mice was examined for markers of cellular degeneration and OLs maturation. RESULTS: Compared to normoxic littermates, only mice exposed to early IH stress demonstrated arrested OLs maturation, diffuse cerebral hypomyelination, and sensorimotor deficit. No cellular death associated with IH was detected. CONCLUSIONS: Neonatal sublethal IH recapitulates the phenotype of diffuse WMI only when IH stress coincides with the developmental stage of primary white matter myelination. This signifies a contribution of cell-nonlethal mechanisms in defining the developmental window of vulnerability to diffuse WMI. IMPACT: The key message of our work is that the developmental window of vulnerability to the WMI driven by intermittent hypoxemia exists even in the absence of excessive OLs and other cells death. This is an important finding because the existence of the developmental window of vulnerability to WMI has been explained by a lethal-selective sensitivity of immature OLs to hypoxic and ischemic stress, which coincided with their differentiation. Thus, our study expands mechanistic explanation of a developmental window of sensitivity to WMI by showing the existence of cell-nonlethal pathways responsible for this biological phenomenon.


Assuntos
Lesões Encefálicas , Substância Branca , Adulto , Animais , Encéfalo , Lesões Encefálicas/metabolismo , Humanos , Hipóxia/metabolismo , Camundongos , Oligodendroglia/metabolismo
10.
J Biol Chem ; 297(4): 101204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543622

RESUMO

Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson's disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min-1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.


Assuntos
Encéfalo/enzimologia , Complexo I de Transporte de Elétrons , Mitocôndrias/enzimologia , Animais , Complexo I de Transporte de Elétrons/análise , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Complexo Cetoglutarato Desidrogenase/análise , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos
11.
Antioxidants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926059

RESUMO

Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA ß-oxidation in pancreatic ß-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.

12.
Commun Biol ; 4(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420340

RESUMO

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Pironas/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção , Estudo de Prova de Conceito , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
EBioMedicine ; 60: 103014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32979838

RESUMO

BACKGROUND: Mitochondrial succinate accumulation has been suggested as key event for ischemia reperfusion injury in mice. No specific data are however available on behavior of liver mitochondria during ex situ machine perfusion in clinical transplant models. METHODS: We investigated mitochondrial metabolism of isolated perfused rat livers before transplantation. Livers were exposed to warm and cold ischemia to simulate donation after circulatory death (DCD) and organ transport. Subsequently, livers were perfused with oxygenated Belzer-MPS for 1h, at hypothermic or normothermic conditions. Various experiments were performed with supplemented succinate and/or mitochondrial inhibitors. The perfusate, liver tissues, and isolated mitochondria were analyzed by mass-spectroscopy and fluorimetry. Additionally, rat DCD livers were transplanted after 1h hypothermic or normothermic oxygenated perfusion. In parallel, perfusate samples were analysed during HOPE-treatment of human DCD livers before transplantation. FINDINGS: Succinate exposure during rat liver perfusion triggered a dose-dependent release of mitochondrial Flavin-Mononucleotide (FMN) and NADH in perfusates under normothermic conditions. In contrast, perfusate FMN was 3-8 fold lower under hypothermic conditions, suggesting less mitochondrial injury during cold re-oxygenation compared to normothermic conditions. HOPE-treatment induced a mitochondrial reprogramming with uploading of the nucleotide pool and effective succinate metabolism. This resulted in a clear superiority after liver transplantation compared to normothermic perfusion. Finally, the degree of mitochondrial injury during HOPE of human DCD livers, quantified by perfusate FMN and NADH, was predictive for liver function. INTERPRETATION: Mitochondrial injury determines outcome of transplanted rodent and human livers. Hypothermic oxygenated perfusion improves mitochondrial function, and allows viability assessment of liver grafts before implantation. FUNDING: detailed information can be found in Acknowledgments.


Assuntos
Hipotermia Induzida , Transplante de Fígado , Fígado/metabolismo , Oxigênio/metabolismo , Perfusão , Traumatismo por Reperfusão/prevenção & controle , Condicionamento Pré-Transplante , Animais , Biomarcadores , Reprogramação Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Humanos , Hipotermia Induzida/métodos , Fígado/cirurgia , Testes de Função Hepática , Transplante de Fígado/métodos , Mitocôndrias/metabolismo , Modelos Animais , NAD , NADP , Perfusão/métodos , Ratos , Relação Estrutura-Atividade , Temperatura , Condicionamento Pré-Transplante/métodos
14.
J Clin Invest ; 130(10): 5536-5550, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925170

RESUMO

Postnatal failure of oligodendrocyte maturation has been proposed as a cellular mechanism of diffuse white matter injury (WMI) in premature infants. However, the molecular mechanisms for oligodendrocyte maturational failure remain unclear. In neonatal mice and cultured differentiating oligodendrocytes, sublethal intermittent hypoxic (IH) stress activated cyclophilin D-dependent mitochondrial proton leak and uncoupled mitochondrial respiration, leading to transient bioenergetic stress. This was associated with development of diffuse WMI: poor oligodendrocyte maturation, diffuse axonal hypomyelination, and permanent sensorimotor deficit. In normoxic mice and oligodendrocytes, exposure to a mitochondrial uncoupler recapitulated the phenotype of WMI, supporting the detrimental role of mitochondrial uncoupling in the pathogenesis of WMI. Compared with WT mice, cyclophilin D-knockout littermates did not develop bioenergetic stress in response to IH challenge and fully preserved oligodendrocyte maturation, axonal myelination, and neurofunction. Our study identified the cyclophilin D-dependent mitochondrial proton leak and uncoupling as a potentially novel subcellular mechanism for the maturational failure of oligodendrocytes and offers a potential therapeutic target for prevention of diffuse WMI in premature infants experiencing chronic IH stress.


Assuntos
Lesões Encefálicas/congênito , Oligodendroglia/metabolismo , Substância Branca/lesões , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Diferenciação Celular , Células Cultivadas , /genética , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Técnicas In Vitro , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/patologia , Desacopladores/farmacologia , Substância Branca/metabolismo , Substância Branca/patologia
16.
Methods Cell Biol ; 155: 273-293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183962

RESUMO

Mitochondria-derived reactive oxygen species (ROS) play an important role in the development of several pathologies and are also involved in physiological signaling. Molecular oxygen is the direct substrate of complex IV of the respiratory chain, and at the same time, its partial reduction in mitochondria results in the formation of ROS, mainly H2O2. The accurate knowledge of the dependence of H2O2 production on oxygen concentration is vital for the studies of tissue ischemia/reperfusion, where the relationship between oxygen availability, respiration, and ROS production is critical. In this chapter, we describe a straightforward and reliable protocol for the assessment of H2O2 release by mitochondria at varying oxygen concentrations. This method can be used for any ROS-generating system where the effect of oxygen level on H2O2 production needs to be assessed.


Assuntos
Técnicas Citológicas/métodos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Algoritmos , Animais , Camundongos
17.
Am J Respir Cell Mol Biol ; 62(2): 231-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31461310

RESUMO

NFU1 is a mitochondrial protein that is involved in the biosynthesis of iron-sulfur clusters, and its genetic modification is associated with disorders of mitochondrial energy metabolism. Patients with autosomal-recessive inheritance of the NFU1 mutation G208C have reduced activity of the respiratory chain Complex II and decreased levels of lipoic-acid-dependent enzymes, and develop pulmonary arterial hypertension (PAH) in ∼70% of cases. We investigated whether rats with a human mutation in NFU1 are also predisposed to PAH development. A point mutation in rat NFU1G206C (human G208C) was introduced through CRISPR/Cas9 genome editing. Hemodynamic data, tissue samples, and fresh mitochondria were collected and analyzed. NFU1G206C rats showed increased right ventricular pressure, right ventricular hypertrophy, and high levels of pulmonary artery remodeling. Computed tomography and angiography of the pulmonary vasculature indicated severe angioobliterative changes in NFU1G206C rats. Importantly, the penetrance of the PAH phenotype was found to be more prevalent in females than in males, replicating the established sex difference among patients with PAH. Male and female homozygote rats exhibited decreased expression and activity of mitochondrial Complex II, and markedly decreased pyruvate dehydrogenase activity and lipoate binding. The limited development of PAH in males correlated with the preserved levels of oligomeric NFU1, increased expression of ISCU (an alternative branch of the iron-sulfur assembly system), and increased complex IV activity. Thus, the male sex has additional plasticity to overcome the iron-sulfur cluster deficiency. Our work describes a novel, humanized rat model of NFU1 deficiency that showed mitochondrial dysfunction similar to that observed in patients and developed PAH with the same sex dimorphism.


Assuntos
Proteínas de Transporte/genética , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/genética , Mutação/genética , Animais , Humanos , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenótipo , Ratos
18.
Mol Cell Neurosci ; 100: 103408, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494262

RESUMO

The purpose of this review is to integrate available data on the effect of brain ischemia/reperfusion (I/R) on mitochondrial complex I. Complex I is a key component of the mitochondrial respiratory chain and it is the only enzyme responsible for regenerating NAD+ for the maintenance of energy metabolism. The vulnerability of brain complex I to I/R injury has been observed in multiple animal models, but the mechanisms of enzyme damage have not been studied. This review summarizes old and new data on the effect of cerebral I/R on mitochondrial complex I, focusing on a recently discovered mechanism of the enzyme impairment. We found that the loss of the natural cofactor flavin mononucleotide (FMN) by complex I takes place after brain I/R. Reduced FMN dissociates from the enzyme if complex I is maintained under conditions of reverse electron transfer when mitochondria oxidize succinate accumulated during ischemia. The potential role of this process in the development of mitochondrial I/R damage in the brain is discussed.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Cell Metab ; 30(4): 824-832.e3, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402314

RESUMO

Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.


Assuntos
Encéfalo/metabolismo , Monóxido de Carbono/uso terapêutico , Hiperóxia/terapia , Doença de Leigh/terapia , Oxigênio/metabolismo , Anemia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Hiperóxia/metabolismo , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Doença de Leigh/metabolismo , Camundongos
20.
Antioxid Redox Signal ; 31(9): 608-622, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31037949

RESUMO

Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 608-622.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Flavinas/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Traumatismo por Reperfusão/metabolismo , Animais , Animais Recém-Nascidos , Complexo I de Transporte de Elétrons/química , Mononucleotídeo de Flavina/metabolismo , Flavinas/química , Peróxido de Hidrogênio/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Camundongos , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/etiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...